// https://syzkaller.appspot.com/bug?id=0c963236471bc9561fd3b38da03cd09482e90c72 // autogenerated by syzkaller (https://github.com/google/syzkaller) #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef __NR_bpf #define __NR_bpf 321 #endif #ifndef __NR_io_uring_register #define __NR_io_uring_register 427 #endif #ifndef __NR_io_uring_setup #define __NR_io_uring_setup 425 #endif static unsigned long long procid; static void sleep_ms(uint64_t ms) { usleep(ms * 1000); } static uint64_t current_time_ms(void) { struct timespec ts; if (clock_gettime(CLOCK_MONOTONIC, &ts)) exit(1); return (uint64_t)ts.tv_sec * 1000 + (uint64_t)ts.tv_nsec / 1000000; } static void use_temporary_dir(void) { char tmpdir_template[] = "./syzkaller.XXXXXX"; char* tmpdir = mkdtemp(tmpdir_template); if (!tmpdir) exit(1); if (chmod(tmpdir, 0777)) exit(1); if (chdir(tmpdir)) exit(1); } static void thread_start(void* (*fn)(void*), void* arg) { pthread_t th; pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, 128 << 10); int i = 0; for (; i < 100; i++) { if (pthread_create(&th, &attr, fn, arg) == 0) { pthread_attr_destroy(&attr); return; } if (errno == EAGAIN) { usleep(50); continue; } break; } exit(1); } typedef struct { int state; } event_t; static void event_init(event_t* ev) { ev->state = 0; } static void event_reset(event_t* ev) { ev->state = 0; } static void event_set(event_t* ev) { if (ev->state) exit(1); __atomic_store_n(&ev->state, 1, __ATOMIC_RELEASE); syscall(SYS_futex, &ev->state, FUTEX_WAKE | FUTEX_PRIVATE_FLAG, 1000000); } static void event_wait(event_t* ev) { while (!__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE)) syscall(SYS_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, 0); } static int event_isset(event_t* ev) { return __atomic_load_n(&ev->state, __ATOMIC_ACQUIRE); } static int event_timedwait(event_t* ev, uint64_t timeout) { uint64_t start = current_time_ms(); uint64_t now = start; for (;;) { uint64_t remain = timeout - (now - start); struct timespec ts; ts.tv_sec = remain / 1000; ts.tv_nsec = (remain % 1000) * 1000 * 1000; syscall(SYS_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, &ts); if (__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE)) return 1; now = current_time_ms(); if (now - start > timeout) return 0; } } static bool write_file(const char* file, const char* what, ...) { char buf[1024]; va_list args; va_start(args, what); vsnprintf(buf, sizeof(buf), what, args); va_end(args); buf[sizeof(buf) - 1] = 0; int len = strlen(buf); int fd = open(file, O_WRONLY | O_CLOEXEC); if (fd == -1) return false; if (write(fd, buf, len) != len) { int err = errno; close(fd); errno = err; return false; } close(fd); return true; } #define SIZEOF_IO_URING_SQE 64 #define SIZEOF_IO_URING_CQE 16 #define SQ_HEAD_OFFSET 0 #define SQ_TAIL_OFFSET 64 #define SQ_RING_MASK_OFFSET 256 #define SQ_RING_ENTRIES_OFFSET 264 #define SQ_FLAGS_OFFSET 276 #define SQ_DROPPED_OFFSET 272 #define CQ_HEAD_OFFSET 128 #define CQ_TAIL_OFFSET 192 #define CQ_RING_MASK_OFFSET 260 #define CQ_RING_ENTRIES_OFFSET 268 #define CQ_RING_OVERFLOW_OFFSET 284 #define CQ_FLAGS_OFFSET 280 #define CQ_CQES_OFFSET 320 struct io_sqring_offsets { uint32_t head; uint32_t tail; uint32_t ring_mask; uint32_t ring_entries; uint32_t flags; uint32_t dropped; uint32_t array; uint32_t resv1; uint64_t resv2; }; struct io_cqring_offsets { uint32_t head; uint32_t tail; uint32_t ring_mask; uint32_t ring_entries; uint32_t overflow; uint32_t cqes; uint64_t resv[2]; }; struct io_uring_params { uint32_t sq_entries; uint32_t cq_entries; uint32_t flags; uint32_t sq_thread_cpu; uint32_t sq_thread_idle; uint32_t features; uint32_t resv[4]; struct io_sqring_offsets sq_off; struct io_cqring_offsets cq_off; }; #define IORING_OFF_SQ_RING 0 #define IORING_OFF_SQES 0x10000000ULL #define IORING_SETUP_SQE128 (1U << 10) #define IORING_SETUP_CQE32 (1U << 11) static long syz_io_uring_setup(volatile long a0, volatile long a1, volatile long a2, volatile long a3) { uint32_t entries = (uint32_t)a0; struct io_uring_params* setup_params = (struct io_uring_params*)a1; void** ring_ptr_out = (void**)a2; void** sqes_ptr_out = (void**)a3; setup_params->flags &= ~(IORING_SETUP_CQE32 | IORING_SETUP_SQE128); uint32_t fd_io_uring = syscall(__NR_io_uring_setup, entries, setup_params); uint32_t sq_ring_sz = setup_params->sq_off.array + setup_params->sq_entries * sizeof(uint32_t); uint32_t cq_ring_sz = setup_params->cq_off.cqes + setup_params->cq_entries * SIZEOF_IO_URING_CQE; uint32_t ring_sz = sq_ring_sz > cq_ring_sz ? sq_ring_sz : cq_ring_sz; *ring_ptr_out = mmap(0, ring_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_POPULATE, fd_io_uring, IORING_OFF_SQ_RING); uint32_t sqes_sz = setup_params->sq_entries * SIZEOF_IO_URING_SQE; *sqes_ptr_out = mmap(0, sqes_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_POPULATE, fd_io_uring, IORING_OFF_SQES); uint32_t* array = (uint32_t*)((uintptr_t)*ring_ptr_out + setup_params->sq_off.array); for (uint32_t index = 0; index < entries; index++) array[index] = index; return fd_io_uring; } static long syz_io_uring_submit(volatile long a0, volatile long a1, volatile long a2) { char* ring_ptr = (char*)a0; char* sqes_ptr = (char*)a1; char* sqe = (char*)a2; uint32_t sq_ring_mask = *(uint32_t*)(ring_ptr + SQ_RING_MASK_OFFSET); uint32_t* sq_tail_ptr = (uint32_t*)(ring_ptr + SQ_TAIL_OFFSET); uint32_t sq_tail = *sq_tail_ptr & sq_ring_mask; char* sqe_dest = sqes_ptr + sq_tail * SIZEOF_IO_URING_SQE; memcpy(sqe_dest, sqe, SIZEOF_IO_URING_SQE); uint32_t sq_tail_next = *sq_tail_ptr + 1; __atomic_store_n(sq_tail_ptr, sq_tail_next, __ATOMIC_RELEASE); return 0; } static long syz_memcpy_off(volatile long a0, volatile long a1, volatile long a2, volatile long a3, volatile long a4) { char* dest = (char*)a0; uint32_t dest_off = (uint32_t)a1; char* src = (char*)a2; uint32_t src_off = (uint32_t)a3; size_t n = (size_t)a4; return (long)memcpy(dest + dest_off, src + src_off, n); } #define MAX_FDS 30 #define USB_MAX_IFACE_NUM 4 #define USB_MAX_EP_NUM 32 #define USB_MAX_FDS 6 struct usb_endpoint_index { struct usb_endpoint_descriptor desc; int handle; }; struct usb_iface_index { struct usb_interface_descriptor* iface; uint8_t bInterfaceNumber; uint8_t bAlternateSetting; uint8_t bInterfaceClass; struct usb_endpoint_index eps[USB_MAX_EP_NUM]; int eps_num; }; struct usb_device_index { struct usb_device_descriptor* dev; struct usb_config_descriptor* config; uint8_t bDeviceClass; uint8_t bMaxPower; int config_length; struct usb_iface_index ifaces[USB_MAX_IFACE_NUM]; int ifaces_num; int iface_cur; }; struct usb_info { int fd; struct usb_device_index index; }; static struct usb_info usb_devices[USB_MAX_FDS]; static struct usb_device_index* lookup_usb_index(int fd) { for (int i = 0; i < USB_MAX_FDS; i++) { if (__atomic_load_n(&usb_devices[i].fd, __ATOMIC_ACQUIRE) == fd) return &usb_devices[i].index; } return NULL; } static int usb_devices_num; static bool parse_usb_descriptor(const char* buffer, size_t length, struct usb_device_index* index) { if (length < sizeof(*index->dev) + sizeof(*index->config)) return false; memset(index, 0, sizeof(*index)); index->dev = (struct usb_device_descriptor*)buffer; index->config = (struct usb_config_descriptor*)(buffer + sizeof(*index->dev)); index->bDeviceClass = index->dev->bDeviceClass; index->bMaxPower = index->config->bMaxPower; index->config_length = length - sizeof(*index->dev); index->iface_cur = -1; size_t offset = 0; while (true) { if (offset + 1 >= length) break; uint8_t desc_length = buffer[offset]; uint8_t desc_type = buffer[offset + 1]; if (desc_length <= 2) break; if (offset + desc_length > length) break; if (desc_type == USB_DT_INTERFACE && index->ifaces_num < USB_MAX_IFACE_NUM) { struct usb_interface_descriptor* iface = (struct usb_interface_descriptor*)(buffer + offset); index->ifaces[index->ifaces_num].iface = iface; index->ifaces[index->ifaces_num].bInterfaceNumber = iface->bInterfaceNumber; index->ifaces[index->ifaces_num].bAlternateSetting = iface->bAlternateSetting; index->ifaces[index->ifaces_num].bInterfaceClass = iface->bInterfaceClass; index->ifaces_num++; } if (desc_type == USB_DT_ENDPOINT && index->ifaces_num > 0) { struct usb_iface_index* iface = &index->ifaces[index->ifaces_num - 1]; if (iface->eps_num < USB_MAX_EP_NUM) { memcpy(&iface->eps[iface->eps_num].desc, buffer + offset, sizeof(iface->eps[iface->eps_num].desc)); iface->eps_num++; } } offset += desc_length; } return true; } static struct usb_device_index* add_usb_index(int fd, const char* dev, size_t dev_len) { int i = __atomic_fetch_add(&usb_devices_num, 1, __ATOMIC_RELAXED); if (i >= USB_MAX_FDS) return NULL; if (!parse_usb_descriptor(dev, dev_len, &usb_devices[i].index)) return NULL; __atomic_store_n(&usb_devices[i].fd, fd, __ATOMIC_RELEASE); return &usb_devices[i].index; } struct vusb_connect_string_descriptor { uint32_t len; char* str; } __attribute__((packed)); struct vusb_connect_descriptors { uint32_t qual_len; char* qual; uint32_t bos_len; char* bos; uint32_t strs_len; struct vusb_connect_string_descriptor strs[0]; } __attribute__((packed)); static const char default_string[] = {8, USB_DT_STRING, 's', 0, 'y', 0, 'z', 0}; static const char default_lang_id[] = {4, USB_DT_STRING, 0x09, 0x04}; static bool lookup_connect_response_in(int fd, const struct vusb_connect_descriptors* descs, const struct usb_ctrlrequest* ctrl, struct usb_qualifier_descriptor* qual, char** response_data, uint32_t* response_length) { struct usb_device_index* index = lookup_usb_index(fd); uint8_t str_idx; if (!index) return false; switch (ctrl->bRequestType & USB_TYPE_MASK) { case USB_TYPE_STANDARD: switch (ctrl->bRequest) { case USB_REQ_GET_DESCRIPTOR: switch (ctrl->wValue >> 8) { case USB_DT_DEVICE: *response_data = (char*)index->dev; *response_length = sizeof(*index->dev); return true; case USB_DT_CONFIG: *response_data = (char*)index->config; *response_length = index->config_length; return true; case USB_DT_STRING: str_idx = (uint8_t)ctrl->wValue; if (descs && str_idx < descs->strs_len) { *response_data = descs->strs[str_idx].str; *response_length = descs->strs[str_idx].len; return true; } if (str_idx == 0) { *response_data = (char*)&default_lang_id[0]; *response_length = default_lang_id[0]; return true; } *response_data = (char*)&default_string[0]; *response_length = default_string[0]; return true; case USB_DT_BOS: *response_data = descs->bos; *response_length = descs->bos_len; return true; case USB_DT_DEVICE_QUALIFIER: if (!descs->qual) { qual->bLength = sizeof(*qual); qual->bDescriptorType = USB_DT_DEVICE_QUALIFIER; qual->bcdUSB = index->dev->bcdUSB; qual->bDeviceClass = index->dev->bDeviceClass; qual->bDeviceSubClass = index->dev->bDeviceSubClass; qual->bDeviceProtocol = index->dev->bDeviceProtocol; qual->bMaxPacketSize0 = index->dev->bMaxPacketSize0; qual->bNumConfigurations = index->dev->bNumConfigurations; qual->bRESERVED = 0; *response_data = (char*)qual; *response_length = sizeof(*qual); return true; } *response_data = descs->qual; *response_length = descs->qual_len; return true; default: break; } break; default: break; } break; default: break; } return false; } typedef bool (*lookup_connect_out_response_t)( int fd, const struct vusb_connect_descriptors* descs, const struct usb_ctrlrequest* ctrl, bool* done); static bool lookup_connect_response_out_generic( int fd, const struct vusb_connect_descriptors* descs, const struct usb_ctrlrequest* ctrl, bool* done) { switch (ctrl->bRequestType & USB_TYPE_MASK) { case USB_TYPE_STANDARD: switch (ctrl->bRequest) { case USB_REQ_SET_CONFIGURATION: *done = true; return true; default: break; } break; } return false; } struct vusb_descriptor { uint8_t req_type; uint8_t desc_type; uint32_t len; char data[0]; } __attribute__((packed)); struct vusb_descriptors { uint32_t len; struct vusb_descriptor* generic; struct vusb_descriptor* descs[0]; } __attribute__((packed)); struct vusb_response { uint8_t type; uint8_t req; uint32_t len; char data[0]; } __attribute__((packed)); struct vusb_responses { uint32_t len; struct vusb_response* generic; struct vusb_response* resps[0]; } __attribute__((packed)); static bool lookup_control_response(const struct vusb_descriptors* descs, const struct vusb_responses* resps, struct usb_ctrlrequest* ctrl, char** response_data, uint32_t* response_length) { int descs_num = 0; int resps_num = 0; if (descs) descs_num = (descs->len - offsetof(struct vusb_descriptors, descs)) / sizeof(descs->descs[0]); if (resps) resps_num = (resps->len - offsetof(struct vusb_responses, resps)) / sizeof(resps->resps[0]); uint8_t req = ctrl->bRequest; uint8_t req_type = ctrl->bRequestType & USB_TYPE_MASK; uint8_t desc_type = ctrl->wValue >> 8; if (req == USB_REQ_GET_DESCRIPTOR) { int i; for (i = 0; i < descs_num; i++) { struct vusb_descriptor* desc = descs->descs[i]; if (!desc) continue; if (desc->req_type == req_type && desc->desc_type == desc_type) { *response_length = desc->len; if (*response_length != 0) *response_data = &desc->data[0]; else *response_data = NULL; return true; } } if (descs && descs->generic) { *response_data = &descs->generic->data[0]; *response_length = descs->generic->len; return true; } } else { int i; for (i = 0; i < resps_num; i++) { struct vusb_response* resp = resps->resps[i]; if (!resp) continue; if (resp->type == req_type && resp->req == req) { *response_length = resp->len; if (*response_length != 0) *response_data = &resp->data[0]; else *response_data = NULL; return true; } } if (resps && resps->generic) { *response_data = &resps->generic->data[0]; *response_length = resps->generic->len; return true; } } return false; } #define UDC_NAME_LENGTH_MAX 128 struct usb_raw_init { __u8 driver_name[UDC_NAME_LENGTH_MAX]; __u8 device_name[UDC_NAME_LENGTH_MAX]; __u8 speed; }; enum usb_raw_event_type { USB_RAW_EVENT_INVALID = 0, USB_RAW_EVENT_CONNECT = 1, USB_RAW_EVENT_CONTROL = 2, }; struct usb_raw_event { __u32 type; __u32 length; __u8 data[0]; }; struct usb_raw_ep_io { __u16 ep; __u16 flags; __u32 length; __u8 data[0]; }; #define USB_RAW_EPS_NUM_MAX 30 #define USB_RAW_EP_NAME_MAX 16 #define USB_RAW_EP_ADDR_ANY 0xff struct usb_raw_ep_caps { __u32 type_control : 1; __u32 type_iso : 1; __u32 type_bulk : 1; __u32 type_int : 1; __u32 dir_in : 1; __u32 dir_out : 1; }; struct usb_raw_ep_limits { __u16 maxpacket_limit; __u16 max_streams; __u32 reserved; }; struct usb_raw_ep_info { __u8 name[USB_RAW_EP_NAME_MAX]; __u32 addr; struct usb_raw_ep_caps caps; struct usb_raw_ep_limits limits; }; struct usb_raw_eps_info { struct usb_raw_ep_info eps[USB_RAW_EPS_NUM_MAX]; }; #define USB_RAW_IOCTL_INIT _IOW('U', 0, struct usb_raw_init) #define USB_RAW_IOCTL_RUN _IO('U', 1) #define USB_RAW_IOCTL_EVENT_FETCH _IOR('U', 2, struct usb_raw_event) #define USB_RAW_IOCTL_EP0_WRITE _IOW('U', 3, struct usb_raw_ep_io) #define USB_RAW_IOCTL_EP0_READ _IOWR('U', 4, struct usb_raw_ep_io) #define USB_RAW_IOCTL_EP_ENABLE _IOW('U', 5, struct usb_endpoint_descriptor) #define USB_RAW_IOCTL_EP_DISABLE _IOW('U', 6, __u32) #define USB_RAW_IOCTL_EP_WRITE _IOW('U', 7, struct usb_raw_ep_io) #define USB_RAW_IOCTL_EP_READ _IOWR('U', 8, struct usb_raw_ep_io) #define USB_RAW_IOCTL_CONFIGURE _IO('U', 9) #define USB_RAW_IOCTL_VBUS_DRAW _IOW('U', 10, __u32) #define USB_RAW_IOCTL_EPS_INFO _IOR('U', 11, struct usb_raw_eps_info) #define USB_RAW_IOCTL_EP0_STALL _IO('U', 12) #define USB_RAW_IOCTL_EP_SET_HALT _IOW('U', 13, __u32) #define USB_RAW_IOCTL_EP_CLEAR_HALT _IOW('U', 14, __u32) #define USB_RAW_IOCTL_EP_SET_WEDGE _IOW('U', 15, __u32) static int usb_raw_open() { return open("/dev/raw-gadget", O_RDWR); } static int usb_raw_init(int fd, uint32_t speed, const char* driver, const char* device) { struct usb_raw_init arg; strncpy((char*)&arg.driver_name[0], driver, sizeof(arg.driver_name)); strncpy((char*)&arg.device_name[0], device, sizeof(arg.device_name)); arg.speed = speed; return ioctl(fd, USB_RAW_IOCTL_INIT, &arg); } static int usb_raw_run(int fd) { return ioctl(fd, USB_RAW_IOCTL_RUN, 0); } static int usb_raw_configure(int fd) { return ioctl(fd, USB_RAW_IOCTL_CONFIGURE, 0); } static int usb_raw_vbus_draw(int fd, uint32_t power) { return ioctl(fd, USB_RAW_IOCTL_VBUS_DRAW, power); } static int usb_raw_ep0_write(int fd, struct usb_raw_ep_io* io) { return ioctl(fd, USB_RAW_IOCTL_EP0_WRITE, io); } static int usb_raw_ep0_read(int fd, struct usb_raw_ep_io* io) { return ioctl(fd, USB_RAW_IOCTL_EP0_READ, io); } static int usb_raw_event_fetch(int fd, struct usb_raw_event* event) { return ioctl(fd, USB_RAW_IOCTL_EVENT_FETCH, event); } static int usb_raw_ep_enable(int fd, struct usb_endpoint_descriptor* desc) { return ioctl(fd, USB_RAW_IOCTL_EP_ENABLE, desc); } static int usb_raw_ep_disable(int fd, int ep) { return ioctl(fd, USB_RAW_IOCTL_EP_DISABLE, ep); } static int usb_raw_ep0_stall(int fd) { return ioctl(fd, USB_RAW_IOCTL_EP0_STALL, 0); } static int lookup_interface(int fd, uint8_t bInterfaceNumber, uint8_t bAlternateSetting) { struct usb_device_index* index = lookup_usb_index(fd); if (!index) return -1; for (int i = 0; i < index->ifaces_num; i++) { if (index->ifaces[i].bInterfaceNumber == bInterfaceNumber && index->ifaces[i].bAlternateSetting == bAlternateSetting) return i; } return -1; } #define USB_MAX_PACKET_SIZE 4096 struct usb_raw_control_event { struct usb_raw_event inner; struct usb_ctrlrequest ctrl; char data[USB_MAX_PACKET_SIZE]; }; struct usb_raw_ep_io_data { struct usb_raw_ep_io inner; char data[USB_MAX_PACKET_SIZE]; }; static void set_interface(int fd, int n) { struct usb_device_index* index = lookup_usb_index(fd); if (!index) return; if (index->iface_cur >= 0 && index->iface_cur < index->ifaces_num) { for (int ep = 0; ep < index->ifaces[index->iface_cur].eps_num; ep++) { int rv = usb_raw_ep_disable( fd, index->ifaces[index->iface_cur].eps[ep].handle); if (rv < 0) { } else { } } } if (n >= 0 && n < index->ifaces_num) { for (int ep = 0; ep < index->ifaces[n].eps_num; ep++) { int rv = usb_raw_ep_enable(fd, &index->ifaces[n].eps[ep].desc); if (rv < 0) { } else { index->ifaces[n].eps[ep].handle = rv; } } index->iface_cur = n; } } static int configure_device(int fd) { struct usb_device_index* index = lookup_usb_index(fd); if (!index) return -1; int rv = usb_raw_vbus_draw(fd, index->bMaxPower); if (rv < 0) { return rv; } rv = usb_raw_configure(fd); if (rv < 0) { return rv; } set_interface(fd, 0); return 0; } static volatile long syz_usb_connect_impl(uint64_t speed, uint64_t dev_len, const char* dev, const struct vusb_connect_descriptors* descs, lookup_connect_out_response_t lookup_connect_response_out) { if (!dev) { return -1; } int fd = usb_raw_open(); if (fd < 0) { return fd; } if (fd >= MAX_FDS) { close(fd); return -1; } struct usb_device_index* index = add_usb_index(fd, dev, dev_len); if (!index) { return -1; } char device[32]; sprintf(&device[0], "dummy_udc.%llu", procid); int rv = usb_raw_init(fd, speed, "dummy_udc", &device[0]); if (rv < 0) { return rv; } rv = usb_raw_run(fd); if (rv < 0) { return rv; } bool done = false; while (!done) { struct usb_raw_control_event event; event.inner.type = 0; event.inner.length = sizeof(event.ctrl); rv = usb_raw_event_fetch(fd, (struct usb_raw_event*)&event); if (rv < 0) { return rv; } if (event.inner.type != USB_RAW_EVENT_CONTROL) continue; char* response_data = NULL; uint32_t response_length = 0; struct usb_qualifier_descriptor qual; if (event.ctrl.bRequestType & USB_DIR_IN) { if (!lookup_connect_response_in(fd, descs, &event.ctrl, &qual, &response_data, &response_length)) { usb_raw_ep0_stall(fd); continue; } } else { if (!lookup_connect_response_out(fd, descs, &event.ctrl, &done)) { usb_raw_ep0_stall(fd); continue; } response_data = NULL; response_length = event.ctrl.wLength; } if ((event.ctrl.bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD && event.ctrl.bRequest == USB_REQ_SET_CONFIGURATION) { rv = configure_device(fd); if (rv < 0) { return rv; } } struct usb_raw_ep_io_data response; response.inner.ep = 0; response.inner.flags = 0; if (response_length > sizeof(response.data)) response_length = 0; if (event.ctrl.wLength < response_length) response_length = event.ctrl.wLength; response.inner.length = response_length; if (response_data) memcpy(&response.data[0], response_data, response_length); else memset(&response.data[0], 0, response_length); if (event.ctrl.bRequestType & USB_DIR_IN) { rv = usb_raw_ep0_write(fd, (struct usb_raw_ep_io*)&response); } else { rv = usb_raw_ep0_read(fd, (struct usb_raw_ep_io*)&response); } if (rv < 0) { return rv; } } sleep_ms(200); return fd; } static volatile long syz_usb_connect(volatile long a0, volatile long a1, volatile long a2, volatile long a3) { uint64_t speed = a0; uint64_t dev_len = a1; const char* dev = (const char*)a2; const struct vusb_connect_descriptors* descs = (const struct vusb_connect_descriptors*)a3; return syz_usb_connect_impl(speed, dev_len, dev, descs, &lookup_connect_response_out_generic); } static volatile long syz_usb_control_io(volatile long a0, volatile long a1, volatile long a2) { int fd = a0; const struct vusb_descriptors* descs = (const struct vusb_descriptors*)a1; const struct vusb_responses* resps = (const struct vusb_responses*)a2; struct usb_raw_control_event event; event.inner.type = 0; event.inner.length = USB_MAX_PACKET_SIZE; int rv = usb_raw_event_fetch(fd, (struct usb_raw_event*)&event); if (rv < 0) { return rv; } if (event.inner.type != USB_RAW_EVENT_CONTROL) { return -1; } char* response_data = NULL; uint32_t response_length = 0; if ((event.ctrl.bRequestType & USB_DIR_IN) && event.ctrl.wLength) { if (!lookup_control_response(descs, resps, &event.ctrl, &response_data, &response_length)) { usb_raw_ep0_stall(fd); return -1; } } else { if ((event.ctrl.bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD || event.ctrl.bRequest == USB_REQ_SET_INTERFACE) { int iface_num = event.ctrl.wIndex; int alt_set = event.ctrl.wValue; int iface_index = lookup_interface(fd, iface_num, alt_set); if (iface_index < 0) { } else { set_interface(fd, iface_index); } } response_length = event.ctrl.wLength; } struct usb_raw_ep_io_data response; response.inner.ep = 0; response.inner.flags = 0; if (response_length > sizeof(response.data)) response_length = 0; if (event.ctrl.wLength < response_length) response_length = event.ctrl.wLength; if ((event.ctrl.bRequestType & USB_DIR_IN) && !event.ctrl.wLength) { response_length = USB_MAX_PACKET_SIZE; } response.inner.length = response_length; if (response_data) memcpy(&response.data[0], response_data, response_length); else memset(&response.data[0], 0, response_length); if ((event.ctrl.bRequestType & USB_DIR_IN) && event.ctrl.wLength) { rv = usb_raw_ep0_write(fd, (struct usb_raw_ep_io*)&response); } else { rv = usb_raw_ep0_read(fd, (struct usb_raw_ep_io*)&response); } if (rv < 0) { return rv; } sleep_ms(200); return 0; } static void setup_gadgetfs(); static void setup_binderfs(); static void setup_fusectl(); static void sandbox_common_mount_tmpfs(void) { write_file("/proc/sys/fs/mount-max", "100000"); if (mkdir("./syz-tmp", 0777)) exit(1); if (mount("", "./syz-tmp", "tmpfs", 0, NULL)) exit(1); if (mkdir("./syz-tmp/newroot", 0777)) exit(1); if (mkdir("./syz-tmp/newroot/dev", 0700)) exit(1); unsigned bind_mount_flags = MS_BIND | MS_REC | MS_PRIVATE; if (mount("/dev", "./syz-tmp/newroot/dev", NULL, bind_mount_flags, NULL)) exit(1); if (mkdir("./syz-tmp/newroot/proc", 0700)) exit(1); if (mount("syz-proc", "./syz-tmp/newroot/proc", "proc", 0, NULL)) exit(1); if (mkdir("./syz-tmp/newroot/selinux", 0700)) exit(1); const char* selinux_path = "./syz-tmp/newroot/selinux"; if (mount("/selinux", selinux_path, NULL, bind_mount_flags, NULL)) { if (errno != ENOENT) exit(1); if (mount("/sys/fs/selinux", selinux_path, NULL, bind_mount_flags, NULL) && errno != ENOENT) exit(1); } if (mkdir("./syz-tmp/newroot/sys", 0700)) exit(1); if (mount("/sys", "./syz-tmp/newroot/sys", 0, bind_mount_flags, NULL)) exit(1); if (mount("/sys/kernel/debug", "./syz-tmp/newroot/sys/kernel/debug", NULL, bind_mount_flags, NULL) && errno != ENOENT) exit(1); if (mount("/sys/fs/smackfs", "./syz-tmp/newroot/sys/fs/smackfs", NULL, bind_mount_flags, NULL) && errno != ENOENT) exit(1); if (mount("/proc/sys/fs/binfmt_misc", "./syz-tmp/newroot/proc/sys/fs/binfmt_misc", NULL, bind_mount_flags, NULL) && errno != ENOENT) exit(1); if (mkdir("./syz-tmp/newroot/syz-inputs", 0700)) exit(1); if (mount("/syz-inputs", "./syz-tmp/newroot/syz-inputs", NULL, bind_mount_flags | MS_RDONLY, NULL) && errno != ENOENT) exit(1); if (mkdir("./syz-tmp/pivot", 0777)) exit(1); if (syscall(SYS_pivot_root, "./syz-tmp", "./syz-tmp/pivot")) { if (chdir("./syz-tmp")) exit(1); } else { if (chdir("/")) exit(1); if (umount2("./pivot", MNT_DETACH)) exit(1); } if (chroot("./newroot")) exit(1); if (chdir("/")) exit(1); setup_gadgetfs(); setup_binderfs(); setup_fusectl(); } static void setup_gadgetfs() { if (mkdir("/dev/gadgetfs", 0777)) { } if (mount("gadgetfs", "/dev/gadgetfs", "gadgetfs", 0, NULL)) { } } static void setup_fusectl() { if (mount(0, "/sys/fs/fuse/connections", "fusectl", 0, 0)) { } } static void setup_binderfs() { if (mkdir("/dev/binderfs", 0777)) { } if (mount("binder", "/dev/binderfs", "binder", 0, NULL)) { } } static void loop(); static void sandbox_common() { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); if (getppid() == 1) exit(1); struct rlimit rlim; rlim.rlim_cur = rlim.rlim_max = (200 << 20); setrlimit(RLIMIT_AS, &rlim); rlim.rlim_cur = rlim.rlim_max = 32 << 20; setrlimit(RLIMIT_MEMLOCK, &rlim); rlim.rlim_cur = rlim.rlim_max = 136 << 20; setrlimit(RLIMIT_FSIZE, &rlim); rlim.rlim_cur = rlim.rlim_max = 1 << 20; setrlimit(RLIMIT_STACK, &rlim); rlim.rlim_cur = rlim.rlim_max = 128 << 20; setrlimit(RLIMIT_CORE, &rlim); rlim.rlim_cur = rlim.rlim_max = 256; setrlimit(RLIMIT_NOFILE, &rlim); if (unshare(CLONE_NEWNS)) { } if (mount(NULL, "/", NULL, MS_REC | MS_PRIVATE, NULL)) { } if (unshare(CLONE_NEWIPC)) { } if (unshare(0x02000000)) { } if (unshare(CLONE_NEWUTS)) { } if (unshare(CLONE_SYSVSEM)) { } typedef struct { const char* name; const char* value; } sysctl_t; static const sysctl_t sysctls[] = { {"/proc/sys/kernel/shmmax", "16777216"}, {"/proc/sys/kernel/shmall", "536870912"}, {"/proc/sys/kernel/shmmni", "1024"}, {"/proc/sys/kernel/msgmax", "8192"}, {"/proc/sys/kernel/msgmni", "1024"}, {"/proc/sys/kernel/msgmnb", "1024"}, {"/proc/sys/kernel/sem", "1024 1048576 500 1024"}, }; unsigned i; for (i = 0; i < sizeof(sysctls) / sizeof(sysctls[0]); i++) write_file(sysctls[i].name, sysctls[i].value); } static int wait_for_loop(int pid) { if (pid < 0) exit(1); int status = 0; while (waitpid(-1, &status, __WALL) != pid) { } return WEXITSTATUS(status); } static void drop_caps(void) { struct __user_cap_header_struct cap_hdr = {}; struct __user_cap_data_struct cap_data[2] = {}; cap_hdr.version = _LINUX_CAPABILITY_VERSION_3; cap_hdr.pid = getpid(); if (syscall(SYS_capget, &cap_hdr, &cap_data)) exit(1); const int drop = (1 << CAP_SYS_PTRACE) | (1 << CAP_SYS_NICE); cap_data[0].effective &= ~drop; cap_data[0].permitted &= ~drop; cap_data[0].inheritable &= ~drop; if (syscall(SYS_capset, &cap_hdr, &cap_data)) exit(1); } static int do_sandbox_none(void) { if (unshare(CLONE_NEWPID)) { } int pid = fork(); if (pid != 0) return wait_for_loop(pid); sandbox_common(); drop_caps(); if (unshare(CLONE_NEWNET)) { } write_file("/proc/sys/net/ipv4/ping_group_range", "0 65535"); sandbox_common_mount_tmpfs(); loop(); exit(1); } #define FS_IOC_SETFLAGS _IOW('f', 2, long) static void remove_dir(const char* dir) { int iter = 0; DIR* dp = 0; const int umount_flags = MNT_FORCE | UMOUNT_NOFOLLOW; retry: while (umount2(dir, umount_flags) == 0) { } dp = opendir(dir); if (dp == NULL) { if (errno == EMFILE) { exit(1); } exit(1); } struct dirent* ep = 0; while ((ep = readdir(dp))) { if (strcmp(ep->d_name, ".") == 0 || strcmp(ep->d_name, "..") == 0) continue; char filename[FILENAME_MAX]; snprintf(filename, sizeof(filename), "%s/%s", dir, ep->d_name); while (umount2(filename, umount_flags) == 0) { } struct stat st; if (lstat(filename, &st)) exit(1); if (S_ISDIR(st.st_mode)) { remove_dir(filename); continue; } int i; for (i = 0;; i++) { if (unlink(filename) == 0) break; if (errno == EPERM) { int fd = open(filename, O_RDONLY); if (fd != -1) { long flags = 0; if (ioctl(fd, FS_IOC_SETFLAGS, &flags) == 0) { } close(fd); continue; } } if (errno == EROFS) { break; } if (errno != EBUSY || i > 100) exit(1); if (umount2(filename, umount_flags)) exit(1); } } closedir(dp); for (int i = 0;; i++) { if (rmdir(dir) == 0) break; if (i < 100) { if (errno == EPERM) { int fd = open(dir, O_RDONLY); if (fd != -1) { long flags = 0; if (ioctl(fd, FS_IOC_SETFLAGS, &flags) == 0) { } close(fd); continue; } } if (errno == EROFS) { break; } if (errno == EBUSY) { if (umount2(dir, umount_flags)) exit(1); continue; } if (errno == ENOTEMPTY) { if (iter < 100) { iter++; goto retry; } } } exit(1); } } static void kill_and_wait(int pid, int* status) { kill(-pid, SIGKILL); kill(pid, SIGKILL); for (int i = 0; i < 100; i++) { if (waitpid(-1, status, WNOHANG | __WALL) == pid) return; usleep(1000); } DIR* dir = opendir("/sys/fs/fuse/connections"); if (dir) { for (;;) { struct dirent* ent = readdir(dir); if (!ent) break; if (strcmp(ent->d_name, ".") == 0 || strcmp(ent->d_name, "..") == 0) continue; char abort[300]; snprintf(abort, sizeof(abort), "/sys/fs/fuse/connections/%s/abort", ent->d_name); int fd = open(abort, O_WRONLY); if (fd == -1) { continue; } if (write(fd, abort, 1) < 0) { } close(fd); } closedir(dir); } else { } while (waitpid(-1, status, __WALL) != pid) { } } static void setup_test() { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setpgrp(); write_file("/proc/self/oom_score_adj", "1000"); if (symlink("/dev/binderfs", "./binderfs")) { } } static void close_fds() { for (int fd = 3; fd < MAX_FDS; fd++) close(fd); } static void setup_sysctl() { int cad_pid = fork(); if (cad_pid < 0) exit(1); if (cad_pid == 0) { for (;;) sleep(100); } char tmppid[32]; snprintf(tmppid, sizeof(tmppid), "%d", cad_pid); struct { const char* name; const char* data; } files[] = { {"/sys/kernel/debug/x86/nmi_longest_ns", "10000000000"}, {"/proc/sys/kernel/hung_task_check_interval_secs", "20"}, {"/proc/sys/net/core/bpf_jit_kallsyms", "1"}, {"/proc/sys/net/core/bpf_jit_harden", "0"}, {"/proc/sys/kernel/kptr_restrict", "0"}, {"/proc/sys/kernel/softlockup_all_cpu_backtrace", "1"}, {"/proc/sys/fs/mount-max", "100"}, {"/proc/sys/vm/oom_dump_tasks", "0"}, {"/proc/sys/debug/exception-trace", "0"}, {"/proc/sys/kernel/printk", "7 4 1 3"}, {"/proc/sys/kernel/keys/gc_delay", "1"}, {"/proc/sys/vm/oom_kill_allocating_task", "1"}, {"/proc/sys/kernel/ctrl-alt-del", "0"}, {"/proc/sys/kernel/cad_pid", tmppid}, }; for (size_t i = 0; i < sizeof(files) / sizeof(files[0]); i++) { if (!write_file(files[i].name, files[i].data)) { } } kill(cad_pid, SIGKILL); while (waitpid(cad_pid, NULL, 0) != cad_pid) ; } struct thread_t { int created, call; event_t ready, done; }; static struct thread_t threads[16]; static void execute_call(int call); static int running; static void* thr(void* arg) { struct thread_t* th = (struct thread_t*)arg; for (;;) { event_wait(&th->ready); event_reset(&th->ready); execute_call(th->call); __atomic_fetch_sub(&running, 1, __ATOMIC_RELAXED); event_set(&th->done); } return 0; } static void execute_one(void) { if (write(1, "executing program\n", sizeof("executing program\n") - 1)) { } int i, call, thread; for (call = 0; call < 24; call++) { for (thread = 0; thread < (int)(sizeof(threads) / sizeof(threads[0])); thread++) { struct thread_t* th = &threads[thread]; if (!th->created) { th->created = 1; event_init(&th->ready); event_init(&th->done); event_set(&th->done); thread_start(thr, th); } if (!event_isset(&th->done)) continue; event_reset(&th->done); th->call = call; __atomic_fetch_add(&running, 1, __ATOMIC_RELAXED); event_set(&th->ready); event_timedwait(&th->done, 50 + (call == 4 ? 3000 : 0) + (call == 5 ? 300 : 0) + (call == 7 ? 500 : 0) + (call == 8 ? 500 : 0)); break; } } for (i = 0; i < 100 && __atomic_load_n(&running, __ATOMIC_RELAXED); i++) sleep_ms(1); close_fds(); } static void execute_one(void); #define WAIT_FLAGS __WALL static void loop(void) { int iter = 0; for (;; iter++) { char cwdbuf[32]; sprintf(cwdbuf, "./%d", iter); if (mkdir(cwdbuf, 0777)) exit(1); int pid = fork(); if (pid < 0) exit(1); if (pid == 0) { if (chdir(cwdbuf)) exit(1); setup_test(); execute_one(); exit(0); } int status = 0; uint64_t start = current_time_ms(); for (;;) { sleep_ms(10); if (waitpid(-1, &status, WNOHANG | WAIT_FLAGS) == pid) break; if (current_time_ms() - start < 5000) continue; kill_and_wait(pid, &status); break; } remove_dir(cwdbuf); } } uint64_t r[10] = {0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff, 0x0, 0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff, 0x0, 0x0}; void execute_call(int call) { intptr_t res = 0; switch (call) { case 0: // socket$inet6 arguments: [ // domain: const = 0xa (8 bytes) // type: socket_type = 0x80002 (8 bytes) // proto: int32 = 0x0 (4 bytes) // ] // returns sock_in6 res = syscall(__NR_socket, /*domain=*/0xaul, /*type=SOCK_CLOEXEC|SOCK_DGRAM*/ 0x80002ul, /*proto=*/0); if (res != -1) r[0] = res; break; case 1: // sendmsg$sock arguments: [ // fd: sock (resource) // msg: ptr[in, msghdr_sock] { // msghdr_sock { // msg_name: ptr[in, sockaddr_storage] { // union sockaddr_storage { // in6: sockaddr_in6 { // family: const = 0xa (2 bytes) // port: int16be = 0x4e23 (2 bytes) // flow: int32be = 0x41d (4 bytes) // addr: union ipv6_addr { // remote: ipv6_addr_t[const[0xbb, int8]] { // a0: const = 0xfe (1 bytes) // a1: const = 0x80 (1 bytes) // a2: buffer: {00 00 00 00 00 00 00 00 00 00 00 00 00} // (length 0xd) a3: const = 0xbb (1 bytes) // } // } // scope: int32 = 0x4 (4 bytes) // } // } // } // msg_namelen: len = 0x80 (4 bytes) // pad = 0x0 (4 bytes) // msg_iov: nil // msg_iovlen: len = 0x0 (8 bytes) // msg_control: ptr[in, array[cmsghdr_sock]] { // array[cmsghdr_sock] { // union cmsghdr_sock { // mark: cmsghdr_t[SOL_SOCKET, SO_MARK, int32] { // unaligned: cmsghdr_unaligned[SOL_SOCKET, SO_MARK, int32] { // cmsg_len: len = 0x14 (8 bytes) // cmsg_level: const = 0x1 (4 bytes) // cmsg_type: const = 0x51 (4 bytes) // data: int32 = 0x1 (4 bytes) // } // pad = 0x0 (4 bytes) // } // } // } // } // msg_controllen: bytesize = 0x18 (8 bytes) // msg_flags: const = 0x0 (4 bytes) // pad = 0x0 (4 bytes) // } // } // f: send_flags = 0x2004c0c1 (8 bytes) // ] *(uint64_t*)0x200000000780 = 0x200000000300; *(uint16_t*)0x200000000300 = 0xa; *(uint16_t*)0x200000000302 = htobe16(0x4e23); *(uint32_t*)0x200000000304 = htobe32(0x41d); *(uint8_t*)0x200000000308 = 0xfe; *(uint8_t*)0x200000000309 = 0x80; memset((void*)0x20000000030a, 0, 13); *(uint8_t*)0x200000000317 = 0xbb; *(uint32_t*)0x200000000318 = 4; *(uint32_t*)0x200000000788 = 0x80; *(uint64_t*)0x200000000790 = 0; *(uint64_t*)0x200000000798 = 0; *(uint64_t*)0x2000000007a0 = 0x200000000040; *(uint64_t*)0x200000000040 = 0x14; *(uint32_t*)0x200000000048 = 1; *(uint32_t*)0x20000000004c = 0x51; *(uint32_t*)0x200000000050 = 1; *(uint64_t*)0x2000000007a8 = 0x18; *(uint32_t*)0x2000000007b0 = 0; syscall( __NR_sendmsg, /*fd=*/r[0], /*msg=*/0x200000000780ul, /*f=MSG_FASTOPEN|MSG_BATCH|MSG_OOB|MSG_NOSIGNAL|MSG_MORE|MSG_EOR|0x40*/ 0x2004c0c1ul); break; case 2: // socket$alg arguments: [ // domain: const = 0x26 (8 bytes) // type: const = 0x5 (8 bytes) // proto: const = 0x0 (4 bytes) // ] // returns sock_alg syscall(__NR_socket, /*domain=*/0x26ul, /*type=*/5ul, /*proto=*/0); break; case 3: // socket$inet_sctp arguments: [ // domain: const = 0x2 (8 bytes) // type: sctp_socket_type = 0x1 (8 bytes) // proto: const = 0x84 (4 bytes) // ] // returns sock_sctp syscall(__NR_socket, /*domain=*/2ul, /*type=SOCK_STREAM*/ 1ul, /*proto=*/0x84); break; case 4: // syz_usb_connect arguments: [ // speed: usb_device_speed = 0x0 (8 bytes) // dev_len: len = 0x3f (8 bytes) // dev: nil // conn_descs: nil // ] // returns fd_usb res = -1; res = syz_usb_connect(/*speed=*/0, /*dev_len=*/0x3f, /*dev=*/0, /*conn_descs=*/0); if (res != -1) r[1] = res; break; case 5: // syz_usb_control_io arguments: [ // fd: fd_usb (resource) // descs: nil // resps: ptr[in, vusb_responses] { // vusb_responses { // len: len = 0x84 (4 bytes) // generic: ptr[inout, array[ANYUNION]] { // array[ANYUNION] { // } // } // get_interface: nil // get_configuration: nil // hub_USB_REQ_GET_STATUS_hub: nil // hub_USB_REQ_GET_STATUS_port: nil // asix_AX_CMD_READ_MII_REG: nil // asix_AX_CMD_STATMNGSTS_REG: nil // asix_AX_CMD_READ_EEPROM: nil // asix_AX_CMD_READ_RX_CTL: nil // asix_AX_CMD_READ_NODE_ID: nil // asix_AX88172_CMD_READ_NODE_ID: nil // asix_AX_CMD_READ_PHY_ID: nil // asix_AX_CMD_READ_MEDIUM_STATUS: nil // asix_AX_CMD_READ_MONITOR_MODE: nil // asix_AX_CMD_READ_GPIOS: nil // asix_AX_CMD_SW_PHY_STATUS: nil // } // } // ] *(uint32_t*)0x200000000300 = 0x84; *(uint64_t*)0x200000000304 = 0x200000001a80; *(uint64_t*)0x20000000030c = 0; *(uint64_t*)0x200000000314 = 0; *(uint64_t*)0x20000000031c = 0; *(uint64_t*)0x200000000324 = 0; *(uint64_t*)0x20000000032c = 0; *(uint64_t*)0x200000000334 = 0; *(uint64_t*)0x20000000033c = 0; *(uint64_t*)0x200000000344 = 0; *(uint64_t*)0x20000000034c = 0; *(uint64_t*)0x200000000354 = 0; *(uint64_t*)0x20000000035c = 0; *(uint64_t*)0x200000000364 = 0; *(uint64_t*)0x20000000036c = 0; *(uint64_t*)0x200000000374 = 0; *(uint64_t*)0x20000000037c = 0; syz_usb_control_io(/*fd=*/r[1], /*descs=*/0, /*resps=*/0x200000000300); break; case 6: // socket$netlink arguments: [ // domain: const = 0x10 (8 bytes) // type: const = 0x3 (8 bytes) // proto: netlink_proto = 0x0 (4 bytes) // ] // returns sock_netlink syscall(__NR_socket, /*domain=*/0x10ul, /*type=*/3ul, /*proto=*/0); break; case 7: // bpf$BPF_PROG_RAW_TRACEPOINT_LOAD arguments: [ // cmd: const = 0x5 (8 bytes) // arg: ptr[in, bpf_prog_t[flags[bpf_raw_tracepoint_prog_types, int32], // const[0, int32], const[0, int32], const[0, int32]]] { // bpf_prog_t[flags[bpf_raw_tracepoint_prog_types, int32], const[0, // int32], const[0, int32], const[0, int32]] { // type: bpf_raw_tracepoint_prog_types = 0x11 (4 bytes) // ninsn: bytesize8 = 0x4 (4 bytes) // insns: ptr[inout, array[ANYUNION]] { // array[ANYUNION] { // union ANYUNION { // ANYBLOB: buffer: {18 01 00 00 00 00 00 00 00 00 00 00 00 00 // 00 00 85 00 00 00 6d 00 00 00 95} (length 0x19) // } // } // } // license: ptr[in, buffer] { // buffer: {47 50 4c 00} (length 0x4) // } // loglev: int32 = 0x0 (4 bytes) // logsize: len = 0x0 (4 bytes) // log: nil // kern_version: bpf_kern_version = 0x0 (4 bytes) // flags: bpf_prog_load_flags = 0x3 (4 bytes) // prog_name: buffer: {00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 // 00} (length 0x10) prog_ifindex: ifindex (resource) // expected_attach_type: const = 0x2 (4 bytes) // btf_fd: fd_btf (resource) // func_info_rec_size: const = 0x8 (4 bytes) // func_info: nil // func_info_cnt: len = 0x0 (4 bytes) // line_info_rec_size: const = 0x10 (4 bytes) // line_info: nil // line_info_cnt: len = 0x0 (4 bytes) // attach_btf_id: const = 0x0 (4 bytes) // attach_prog_fd: const = 0x0 (4 bytes) // core_relo_cnt: len = 0x0 (4 bytes) // fd_array: nil // core_relos: nil // core_relo_rec_size: const = 0x10 (4 bytes) // log_true_size: int32 = 0x0 (4 bytes) // prog_token_fd: union // _bpf_prog_t[flags[bpf_raw_tracepoint_prog_types, int32], const[0, // int32], const[0, int32], const[0, int32]]_prog_token_fd_wrapper { // void: buffer: {} (length 0x0) // } // pad: union _bpf_prog_t[flags[bpf_raw_tracepoint_prog_types, // int32], const[0, int32], const[0, int32], const[0, // int32]]_pad_wrapper { // value: const = 0x0 (4 bytes) // } // } // } // size: len = 0x94 (8 bytes) // ] // returns fd_bpf_prog_raw_tracepoint *(uint32_t*)0x200000000200 = 0x11; *(uint32_t*)0x200000000204 = 4; *(uint64_t*)0x200000000208 = 0x2000000002c0; memcpy((void*)0x2000000002c0, "\x18\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x85\x00\x00\x00\x6d\x00\x00\x00\x95", 25); *(uint64_t*)0x200000000210 = 0x200000000180; memcpy((void*)0x200000000180, "GPL\000", 4); *(uint32_t*)0x200000000218 = 0; *(uint32_t*)0x20000000021c = 0; *(uint64_t*)0x200000000220 = 0; *(uint32_t*)0x200000000228 = 0; *(uint32_t*)0x20000000022c = 3; memset((void*)0x200000000230, 0, 16); *(uint32_t*)0x200000000240 = 0; *(uint32_t*)0x200000000244 = 2; *(uint32_t*)0x200000000248 = -1; *(uint32_t*)0x20000000024c = 8; *(uint64_t*)0x200000000250 = 0; *(uint32_t*)0x200000000258 = 0; *(uint32_t*)0x20000000025c = 0x10; *(uint64_t*)0x200000000260 = 0; *(uint32_t*)0x200000000268 = 0; *(uint32_t*)0x20000000026c = 0; *(uint32_t*)0x200000000270 = 0; *(uint32_t*)0x200000000274 = 0; *(uint64_t*)0x200000000278 = 0; *(uint64_t*)0x200000000280 = 0; *(uint32_t*)0x200000000288 = 0x10; *(uint32_t*)0x20000000028c = 0; *(uint32_t*)0x200000000290 = 0; res = syscall(__NR_bpf, /*cmd=*/5ul, /*arg=*/0x200000000200ul, /*size=*/0x94ul); if (res != -1) r[2] = res; break; case 8: // bpf$BPF_RAW_TRACEPOINT_OPEN arguments: [ // cmd: const = 0x11 (8 bytes) // arg: ptr[in, bpf_raw_tracepoint] { // bpf_raw_tracepoint { // name: ptr[in, buffer] { // buffer: {73 63 68 65 64 5f 73 77 69 74 63 68 00} (length 0xd) // } // prog_fd: fd_bpf_prog_raw_tracepoint (resource) // pad: const = 0x0 (4 bytes) // cookie: int64 = 0x0 (8 bytes) // } // } // size: len = 0x18 (8 bytes) // ] // returns fd_perf_base *(uint64_t*)0x200000000080 = 0x200000000000; memcpy((void*)0x200000000000, "sched_switch\000", 13); *(uint32_t*)0x200000000088 = r[2]; *(uint32_t*)0x20000000008c = 0; *(uint64_t*)0x200000000090 = 0; syscall(__NR_bpf, /*cmd=*/0x11ul, /*arg=*/0x200000000080ul, /*size=*/0x18ul); break; case 9: // prlimit64 arguments: [ // pid: pid (resource) // res: rlimit_type = 0xe (8 bytes) // new: ptr[in, rlimit] { // rlimit { // soft: intptr = 0x8 (8 bytes) // hard: intptr = 0x88 (8 bytes) // } // } // old: nil // ] *(uint64_t*)0x200000000140 = 8; *(uint64_t*)0x200000000148 = 0x88; syscall(__NR_prlimit64, /*pid=*/0, /*res=RLIMIT_RTPRIO*/ 0xeul, /*new=*/0x200000000140ul, /*old=*/0ul); break; case 10: // sched_setscheduler arguments: [ // pid: pid (resource) // policy: sched_policy = 0x1 (8 bytes) // prio: ptr[in, int32] { // int32 = 0x7 (4 bytes) // } // ] *(uint32_t*)0x200000000240 = 7; syscall(__NR_sched_setscheduler, /*pid=*/0, /*policy=SCHED_FIFO*/ 1ul, /*prio=*/0x200000000240ul); break; case 11: // getpid arguments: [ // ] // returns pid res = syscall(__NR_getpid); if (res != -1) r[3] = res; break; case 12: // socket$inet6_sctp arguments: [ // domain: const = 0xa (8 bytes) // type: sctp_socket_type = 0x5 (8 bytes) // proto: const = 0x84 (4 bytes) // ] // returns sock_sctp6 res = syscall(__NR_socket, /*domain=*/0xaul, /*type=SOCK_SEQPACKET*/ 5ul, /*proto=*/0x84); if (res != -1) r[4] = res; break; case 13: // setsockopt$inet_sctp6_SCTP_DELAYED_SACK arguments: [ // fd: sock_sctp6 (resource) // level: const = 0x84 (4 bytes) // opt: const = 0x10 (4 bytes) // val: nil // len: len = 0x0 (8 bytes) // ] syscall(__NR_setsockopt, /*fd=*/r[4], /*level=*/0x84, /*opt=*/0x10, /*val=*/0ul, /*len=*/0ul); break; case 14: // sched_setscheduler arguments: [ // pid: pid (resource) // policy: sched_policy = 0x2 (8 bytes) // prio: ptr[in, int32] { // int32 = 0x7 (4 bytes) // } // ] *(uint32_t*)0x200000000200 = 7; syscall(__NR_sched_setscheduler, /*pid=*/r[3], /*policy=SCHED_RR*/ 2ul, /*prio=*/0x200000000200ul); break; case 15: // prctl$PR_SCHED_CORE arguments: [ // option: const = 0x3e (8 bytes) // cmd: intptr = 0x1 (8 bytes) // pid: pid (resource) // type: pid_type = 0x2 (8 bytes) // uaddr: nil // ] syscall(__NR_prctl, /*option=*/0x3eul, /*cmd=*/1ul, /*pid=*/0, /*type=PIDTYPE_PGID*/ 2ul, /*uaddr=*/0ul); break; case 16: // socketpair$unix arguments: [ // domain: const = 0x1 (8 bytes) // type: unix_socket_type = 0x3 (8 bytes) // proto: const = 0x0 (4 bytes) // fds: ptr[out, unix_pair] { // unix_pair { // fd0: sock_unix (resource) // fd1: sock_unix (resource) // } // } // ] res = syscall(__NR_socketpair, /*domain=*/1ul, /*type=SOCK_DGRAM|SOCK_STREAM*/ 3ul, /*proto=*/0, /*fds=*/0x200000000080ul); if (res != -1) { r[5] = *(uint32_t*)0x200000000080; r[6] = *(uint32_t*)0x200000000084; } break; case 17: // connect$unix arguments: [ // fd: sock_unix (resource) // addr: ptr[in, sockaddr_un] { // union sockaddr_un { // file: sockaddr_un_file { // family: unix_socket_family = 0x0 (2 bytes) // path: buffer: {2e 2f 66 69 6c 65 30 00 00 00 00 00 00 00 00 00 // 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 // 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 // 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 // 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 // 00 00 00 00 00 00 00 00} (length 0x6c) // } // } // } // addrlen: len = 0x6e (8 bytes) // ] *(uint16_t*)0x20000057eff8 = 0; memcpy( (void*)0x20000057effa, "./" "file0\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000" "\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000" "\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000" "\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000" "\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000" "\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000", 108); syscall(__NR_connect, /*fd=*/r[5], /*addr=*/0x20000057eff8ul, /*addrlen=*/0x6eul); break; case 18: // sendmmsg$unix arguments: [ // fd: sock_unix (resource) // mmsg: ptr[in, array[send_mmsghdr_un]] { // array[send_mmsghdr_un] { // } // } // vlen: len = 0x318 (8 bytes) // f: send_flags = 0x0 (8 bytes) // ] syscall(__NR_sendmmsg, /*fd=*/r[6], /*mmsg=*/0x2000000bd000ul, /*vlen=*/0x318ul, /*f=*/0ul); break; case 19: // recvmmsg arguments: [ // fd: sock (resource) // mmsg: ptr[in, array[recv_mmsghdr]] { // array[recv_mmsghdr] { // } // } // vlen: len = 0x10106 (8 bytes) // f: recv_flags = 0x2 (8 bytes) // timeout: nil // ] syscall(__NR_recvmmsg, /*fd=*/r[5], /*mmsg=*/0x2000000000c0ul, /*vlen=*/0x10106ul, /*f=MSG_PEEK*/ 2ul, /*timeout=*/0ul); break; case 20: // syz_io_uring_setup arguments: [ // entries: int32 = 0x49e (4 bytes) // params: ptr[inout, io_uring_params] { // io_uring_params { // sq_entries: int32 = 0x0 (4 bytes) // cq_entries: int32 = 0x4000e7a8 (4 bytes) // flags: io_uring_setup_flags = 0x2 (4 bytes) // sq_thread_cpu: int32 = 0x3 (4 bytes) // sq_thread_idle: int32 = 0x40024e (4 bytes) // features: int32 = 0x0 (4 bytes) // wq_fd: fd_io_uring (resource) // resv: buffer: {00 00 00 00 00 00 00 00 00 00 00 00} (length 0xc) // sq_off: array[int32] { // int32 = 0x0 (4 bytes) // int32 = 0x0 (4 bytes) // int32 = 0x0 (4 bytes) // int32 = 0x0 (4 bytes) // int32 = 0x0 (4 bytes) // int32 = 0x0 (4 bytes) // int32 = 0x0 (4 bytes) // int32 = 0x0 (4 bytes) // int32 = 0x0 (4 bytes) // int32 = 0x0 (4 bytes) // } // cq_off: array[int32] { // int32 = 0x0 (4 bytes) // int32 = 0x0 (4 bytes) // int32 = 0x0 (4 bytes) // int32 = 0x0 (4 bytes) // int32 = 0x0 (4 bytes) // int32 = 0x0 (4 bytes) // int32 = 0x0 (4 bytes) // int32 = 0x0 (4 bytes) // int32 = 0x0 (4 bytes) // int32 = 0x0 (4 bytes) // } // } // } // ring_ptr: ptr[out, ring_ptr] { // ring_ptr (resource) // } // sqes_ptr: ptr[out, sqes_ptr] { // sqes_ptr (resource) // } // ] // returns fd_io_uring *(uint32_t*)0x200000000404 = 0x4000e7a8; *(uint32_t*)0x200000000408 = 2; *(uint32_t*)0x20000000040c = 3; *(uint32_t*)0x200000000410 = 0x40024e; *(uint32_t*)0x200000000418 = -1; memset((void*)0x20000000041c, 0, 12); res = -1; res = syz_io_uring_setup(/*entries=*/0x49e, /*params=*/0x200000000400, /*ring_ptr=*/0x200000000340, /*sqes_ptr=*/0x2000000001c0); if (res != -1) { r[7] = res; r[8] = *(uint64_t*)0x200000000340; r[9] = *(uint64_t*)0x2000000001c0; } break; case 21: // syz_memcpy_off$IO_URING_METADATA_GENERIC arguments: [ // ring_ptr: ring_ptr (resource) // off: io_uring_offsets = 0x4 (8 bytes) // src: ptr[in, int32] { // int32 = 0xffb (4 bytes) // } // src_off: const = 0x0 (8 bytes) // nbytes: const = 0x4 (8 bytes) // ] *(uint32_t*)0x200000000000 = 0xffb; syz_memcpy_off(/*ring_ptr=*/r[8], /*off=*/4, /*src=*/0x200000000000, /*src_off=*/0, /*nbytes=*/4); break; case 22: // io_uring_register$IORING_REGISTER_EVENTFD arguments: [ // fd: fd_io_uring (resource) // opcode: const = 0x4 (8 bytes) // arg: ptr[in, fd_event] { // fd_event (resource) // } // nr_args: const = 0x1 (8 bytes) // ] *(uint32_t*)0x200000000300 = -1; syscall(__NR_io_uring_register, /*fd=*/r[7], /*opcode=*/4ul, /*arg=*/0x200000000300ul, /*nr_args=*/1ul); break; case 23: // syz_io_uring_submit arguments: [ // ring_ptr: ring_ptr (resource) // sqes_ptr: sqes_ptr (resource) // sqe: ptr[in, io_uring_sqe_u] { // union io_uring_sqe_u { // IORING_OP_MSG_RING: io_uring_sqe[IORING_OP_MSG_RING, const[0, // int16], fd_io_uring, flags[iouring_msg_ring_cmd_flags, int64], // buffer[in], len[addr, int32], flags[msg_ring_flags, int32], // sqe_user_data_not_openat, personality_only_misc] { // opcode: const = 0x28 (1 bytes) // flags: iosqe_flags = 0x40 (1 bytes) // ioprio: const = 0x0 (2 bytes) // fd: fd_io_uring (resource) // off: iouring_msg_ring_cmd_flags = 0x0 (8 bytes) // addr: nil // len: len = 0x0 (4 bytes) // misc_flags: msg_ring_flags = 0x2 (4 bytes) // user_data: sqe_user_data_not_openat = 0x0 (8 bytes) // misc: personality_only_misc { // buf_index_unused: const = 0x0 (2 bytes) // ioring_personality_id: ioring_personality_id (resource) // pad_unused: buffer: {00 00 00 00 00 00 00 00 00 00 00 00 00 00 // 00 00 00 00 00 00} (length 0x14) // } // } // } // } // ] *(uint8_t*)0x2000000002c0 = 0x28; *(uint8_t*)0x2000000002c1 = 0x40; *(uint16_t*)0x2000000002c2 = 0; *(uint32_t*)0x2000000002c4 = r[7]; *(uint64_t*)0x2000000002c8 = 0; *(uint64_t*)0x2000000002d0 = 0; *(uint32_t*)0x2000000002d8 = 0; *(uint32_t*)0x2000000002dc = 2; *(uint64_t*)0x2000000002e0 = 0; *(uint16_t*)0x2000000002e8 = 0; *(uint16_t*)0x2000000002ea = 0; memset((void*)0x2000000002ec, 0, 20); syz_io_uring_submit(/*ring_ptr=*/r[8], /*sqes_ptr=*/r[9], /*sqe=*/0x2000000002c0); break; } } int main(void) { syscall(__NR_mmap, /*addr=*/0x1ffffffff000ul, /*len=*/0x1000ul, /*prot=*/0ul, /*flags=MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE*/ 0x32ul, /*fd=*/(intptr_t)-1, /*offset=*/0ul); syscall(__NR_mmap, /*addr=*/0x200000000000ul, /*len=*/0x1000000ul, /*prot=PROT_WRITE|PROT_READ|PROT_EXEC*/ 7ul, /*flags=MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE*/ 0x32ul, /*fd=*/(intptr_t)-1, /*offset=*/0ul); syscall(__NR_mmap, /*addr=*/0x200001000000ul, /*len=*/0x1000ul, /*prot=*/0ul, /*flags=MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE*/ 0x32ul, /*fd=*/(intptr_t)-1, /*offset=*/0ul); setup_sysctl(); const char* reason; (void)reason; for (procid = 0; procid < 5; procid++) { if (fork() == 0) { use_temporary_dir(); do_sandbox_none(); } } sleep(1000000); return 0; }